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A different look at the magnetic properties 
of the geometrically frustrated spin-chain compound Ca3Co2O6
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• Introduction to the magnetic properties of Ca3Co2O6

• Ground state and magnetization loops: the puzzle of metastable states 
that are in the wrong place and relax in the wrong direction

• Magnetic history dependence and how to access the different states

• Using vortex dynamics concepts to try to make sense of the time evolution

• Identification of a previously unobserved stable phase

• The simpler (and vortex-like) dynamics at high T 

• Summary

Outline
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The geometrically frustrated spin-chain compound Ca3Co2O6

• Rhombohedral structure composed of [Co2O6] infinite chains 
running along the c axis of the hexagonal cell, with the Ca cations 
located in between them.

• The chains are made of alternating, facesharing CoO6 trigonal 
prisms and CoO6 octahedra. 

• Each chain is surrounded by six equally spaced chains forming a 
triangular lattice in the ab plane.

• The intrachain coupling is ferromagnetic (Tc1~24K) while the much 
weaker interchain coupling is antiferromagnetic (Tc2~12K).

• The spins in each chain are either all up or all down.

A. Maigman et al., Eur. Phys. J. B 15, 657 (2000)

First single crystals

Below 5 K the M(H) loops are 
irreversible, and reveal new stable 
magnetic structures …. for T = 2 K, 
two intermediate magnetization 
plateaus are observed….



The metastable steps in the Ca3Co2O6 magnetization loops

Phys . Rev. B 70, 064424 (2004)

2K

10K

• Magnetic frustration.
• The time evolution of the metastable states can be nonmonotonic.
• The dynamics is very slow (hours to days).



Evolution of the phase fractions studied by neutron diffraction



Recent pulsed fields studies at LANL

Motivation: 
Huge dμ0H/dt up to 1660 T/s

Vivien Zapf proposed us to test experimentally some theoretical predictions about quantum annealing 
 Ivan Nekrashevich et al., manuscript in preparation

This talk is about a different story
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The basics: at T = 2K, we observe the steps at 1.2; 2.4 and 3.6T
Question: which is the ground state at 2K? 2K

10K V. Hardy et al., 
Phys . Rev. B 70, 
064424 (2004)
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Curves cross: 
• Same M, different microstate
• Energy barrier

Lower branch of the M(H) loop 
is above Meq(H)

Procedure: FC at field H from >30K to 2K – repeat for each H

The basics: at T = 2K, we observe the steps at 1.2; 2.4 and 3.6T
Question: which is the ground state at 2K?

Ground state:
H>3.6T: all chains up Msat

H<3.6T: 2 chains up, 1 down Msat/3
(Ordered)

2K

10K V. Hardy et al., 
Phys . Rev. B 70, 
064424 (2004)
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• FC: ordered ground state

• First M(H) loop after ZFC: steps

• Subsequent loops: no steps

• FC at 0.125T  H=0  loop:

0 1 2 3 4 5 6 7

0

0.33

0.67

1

M
/M

s
a
t

m0H (T)

 Meq(H) (FC)

 1st M(H) loop

 2nd M(H) loop

T = 2K

ZFC to 2K

End of 
1st loop

Magnetic history dependence: How do we access the different states?



0 1 2 3 4 5 6 7

0

0.33

0.67

1

M
/M

s
a
t

m0H (T)

 Meq(H) (FC)

 1st M(H) loop

 2nd M(H) loop

 FC at 0.125T

T = 2K

ZFC to 2K

End of 
1st loop

Magnetic history dependence: How do we access the different states?

• FC: ordered ground state

• First M(H) loop after ZFC: steps

• Subsequent loops: no steps

• FC at 0.125T  H=0  loop: similar to 1st loop

• FC at 1T  H=0  loop:



0 1 2 3 4 5 6 7

0

0.33

0.67

1

M
/M

s
a
t

m0H (T)

 Meq(H) (FC)

 1st M(H) loop

 2nd M(H) loop

 FC at 0.125T

 FC at 1T

T = 2K

ZFC to 2K

End of 
1st loop

• FC: ordered ground state

• First M(H) loop after ZFC: steps

• Subsequent loops: no steps

• FC at 0.125T  H=0  loop: similar to 1st loop

• FC at 1T  H=0  loop: lower branch ~Msat/3

• FC at 3T  H=0  loop:

Magnetic history dependence: How do we access the different states?



0 1 2 3 4 5 6 7

0

0.33

0.67

1

M
/M

s
a
t

m0H (T)

 Meq(H) (FC)

 1st M(H) loop

 2nd M(H) loop

 FC at 0.125T

 FC at 1T

 FC at 3T

T = 2K

ZFC to 2K

End of 
1st loop

Magnetic history dependence: How do we access the different states?

• FC: ordered ground state

• First M(H) loop after ZFC: steps

• Subsequent loops: no steps

• FC at 0.125T  H=0  loop: similar to 1st loop

• FC at 1T  H=0  loop: lower branch ~Msat/3

• FC at 3T  H=0  loop: lower branch ~Msat/3

• FC at 4T  H=0  loop:



0 1 2 3 4 5 6 7

0

0.33

0.67

1

M
/M

s
a
t

m0H (T)

 Meq(H) (FC)

 1st M(H) loop

 2nd M(H) loop

 FC at 0.125T

 FC at 1T

 FC at 3T

 FC at 4T

T = 2K

ZFC to 2K

End of 
1st loop

Magnetic history dependence: How do we access the different states?

• FC: ordered ground state

• First M(H) loop after ZFC: steps

• Subsequent loops: no steps

• FC at 0.125T  H=0  loop: similar to 1st loop

• FC at 1T  H=0  loop: lower branch ~Msat/3

• FC at 3T  H=0  loop: lower branch ~Msat/3

• FC at 4T  H=0  loop: same as 2nd loop



0 1 2 3 4 5 6 7

0

0.33

0.67

1

M
/M

s
a
t

m0H (T)

 M(H) loop

 Meq(H) (FC)

T = 2K

Focus has been on understanding the steps in the M(H) loops
Metastable states  complex

Alternative: to what states are the steps relaxing to?

V. Hardy et al., 
Phys . Rev. B 
70, 064424 
(2004)

Does the 3rd step 
relax to Msat/3?
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The lower branch of M(H) relaxes upward, for all H (at T = 2K)
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The lower branch of M(H) relaxes upward, for all H (at T = 2K)
The upper branch relaxes downward for all H, and much faster

Non exponential time 
evolution  interactions
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Can we access intermediate states between both 
branches, and show that they are more stable?

Evidence suggests that there is a line of lower energy 
(more stable) states inside the M(H) loop
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There is a region inside the M(H) loop where the magnetization 
is more stable than in the lower and upper branches

At T = 2K and m0H = 3.2 T, there are states in a 
range of M intermediate between both branches 
that are stable within our experimental resolution

Work in progress: explore the location 
of the stability region at other fields

Does this stability region extend 
to higher temperatures?
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Summary

Over the last several decades, we at the superconductivity 
research community have developed a powerful set of 
experimental and theoretical tools to investigate vortex matter.

Applying those tools to other materials and phenomena, as in the 
example presented in this talk, can provide a fresh perspective 
to solve some problems.

The magnetic properties of the geometrically frustrated spin-
chain compound Ca3Co2O6 are complex, and a complete 
description of the steps in the M(H) loops remains elusive. We 
have identified a previously unobserved stable phase at low T.   
A simpler vortex-like dynamics emerges at high T.

Thank you to the organizers for working so hard to put this 
workshop together, in spite of all the challenges!!

Looking forward to see all of you (I mean, really see you)   in the 
next workshop!


